ClibPD

a2 United States Patent

Flowers et al.

US006957348B1

(10) Patent No.:
5) Date of Patent:

US 6,957,348 B1
Oct. 18, 2005

(54) INTEROPERABILITY OF VULNERABILITY
AND INTRUSION DETECTION SYSTEMS

(75) TInventors: John S. Flowers, Emeryville, CA (US);
Thomas C. Stracener, Emeryville, CA
(US)

(73) Assignee: nCircle Network Security, Inc., San
Francisco, CA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 517 days.
(21) Appl. No.: 09/757,963

(22) Filed: Jan. 10, 2001

Related U.S. Application Data
(60) Provisional application No. 60/175,332, filed on Jan. 10,

2000.
(51) It CL7 oo GOG6F 11/30
(52) US.CL oo 713/201; 713/200; 713/202;

709/223; 709/224; 370/229; 370/230; 370/241;
370/254; 370/255

(58) Field of Searchcc.ceccevenee. 713/201, 200;
709/223, 224; 370/229, 230, 241, 254,
255
(56) References Cited
U.S. PATENT DOCUMENTS
5,136,523 A 8/1992 Landersccccceeeeuenene. 395/54
5,278,901 A 1/1994 Shieh et al. 380/4
5,388,211 A 2/1995 Hornbuckle
(Continued)
Internet 112

110

Router

108

. ‘//
Firewall

server C

DS

116

www fastio.com

VDS

FOREIGN PATENT DOCUMENTS

WO WO 01/31420 A2 5/2001
WO WO00184270 A2 * §/2001
WO WO00219661 A2 * 3/2002 ... HO04L/29/06
WO WO 02/45380 A2 6/2002
WO WO0310617 Al * 12/2003 GO6F/11/30

OTHER PUBLICATIONS

Johnson, Johna, Simulated Attack for Real Network Secu-
rity, Nov. 1995, Data Communications, pp. 31-32.*
Anderson, Teresa, Hunting for Holes, Apr. 1996, Security
Management, pp. 1-2.*

Breyfogle, Stacey, Don’t Stop at Your Servers, Jan. 1998,
Software Magazine, pp. 1-3.*

Microsoft Computer Dictionary, 2002, Microsoft Press,
Fifth Edition, pp. 31, 256, 378, 405.*

(Continued)

Primary Examiner—Ayaz Sheikh
Assistant Examiner—Aravind Moorthy
(74) Antorney, Agent, or Firm—Fenwick & West LLP

(7) ABSTRACT

A system in accordance with an embodiment of the inven-
tion includes a vulnerability detection system (VDS) and an
intrusion detection system (IDS). The intrusion detection
system leverages off of information gathered about a
network, such as vulnerabilities, so that it only examines and
alerts the user to potential intrusions that could actually
affect the particular network. In addition both the VDS and
IDS use rules in performing their respective analyses that are
query-based and that are easy to construct. In particular
these rules are based on a set of templates, which represent
various entities or processes on the network.

33 Claims, 4 Drawing Sheets

server A

114
102

server B

104

——

T

106
—
T~

http://www.fastio.com/

ClibPD

US 6,957,348 Bl
Page 2

U.S. PATENT DOCUMENTS

5,557,742 A * 9/1996 Smaha et al. 395/186

5,699,403 A * 12/1997 Ronnencccocceeee... 379/32

5,796,942 A 8/1998 Esbensen

5,798,706 A 8/1998 Kraemer et al.

5,802,320 A 9/1998 Baehr et al. 395/200.79

5,892,903 A * 4/1999 Klaus ... 395/187.01

5919257 A * 7/1999 Trostleccccoveeennnnen. 713/200

5923646 A * 7/1999 Mandhyan 370/254

5,931,946 A 8/1999 Terada et al.

5,958,015 A 9/1999 Dascalu

5,961,644 A * 10/1999 Kurtzberg et al. 713/200

5,991,881 A 11/1999 Conklin et al.

6,006,328 A 12/1999 Drake

6,088,804 A 7/2000 Hill et al.

6,101,606 A 8/2000 Diersch et al.

6,185,689 B1 * 2/2001 Todd, Sr. et al. 713/201

6,199,181 B1 3/2001 Rechef et al. 713/201

6,263,444 B1 7/2001 Fujita

6,269,447 B1 * 7/2001 Maloney et al. 713/201

6,279,113 Bl 8/2001 Vaidya

6,282,546 Bl 8/2001 Gleichauf et al.

6,298,445 B1 * 10/2001 Shostack et al. 713/201

6,301,668 B1 10/2001 Gleichauf et al.

6,321,338 B1 11/2001 Porras et al.

6,324,656 B1 * 11/2001 Gleichauf et al. 714/37

6,330,562 B1 12/2001 Boden et al.

6,343,362 B1 * 1/2002 Ptacek et al. 713/201

6,347,376 Bl 2/2002 Attwood et al.

6,359,557 B2 3/2002 Bilder

6,363,489 B1 * 3/2002 Comay et al. 713/201

6,370,648 Bl 4/2002 Diep

6,408,391 B1 6/2002 Huff et al.

6,415,321 B1 7/2002 Gleichauf et al. 709/224

6,470,384 B1 * 10/2002 O’Brien et al. 709/223

6,473,800 B1 10/2002 Jerger et al. 709/226

6,477,651 B1 * 11/2002 Tealcccccceeveeeevnennne 713/200

6,484,315 Bl * 11/2002 ZieSE ..oeeeveeeereeernennnnn 717/173

6,490,626 B1 12/2002 Edwards et al. 709/229

6,584,569 B2 6/2003 Reshef et al. 713/261

6,609,205 B1 * 8/2003 Bernhard et al. 713/201

6,708,212 B2 * 3/2004 Porras et al. 709/224

6,711,127 B1 * 3/2004 Gorman et al. 370/230

6,735,169 B1 * 5/2004 Albert et al. 370/229

6,771,597 B2 * 8/2004 Makansi et al. 370/230

6,775,657 Bl * 8/2004 BaKerc.ccccccceeevuenenen. 706/45
2002/0133721 Al 9/2002 Adjaoute

OTHER PUBLICATIONS

Rebecca Bace, Infidel, Inc. “An Introduction to Intrusion
Detection and Assessment”, 1999, 38 pages.

Fyodor, “Remote OS detection via TCP/IP Stack Finger-
Printing”, Oct. 18, 1998, 10pages.

Abstract, W. Erhard, et al., “Network Traffic Analysis and
Security Monitoring With UniMon”, Proceeding of the
IEEE Conference on High Performance Switching and
Routing, 2000, ATM 2000, pp 439-46 (Jun. 2000).

www fastio.com

Abstract, Dept. of Comput. Sci., California Univ., Davis,
CA, USA, “A Methodology For Testing Intrusion Detection
Systems,” IEEE Transactions on Software Engineering, vol.
22, Issue 10, pp 719-29 (Oct. 1996).

Abstract, Mounji A. Le Charlier, et al., “Distributed Audit
Trail Analysis”, Proceeding of the Symposium on Network
and Distributed System Security, 1995, pp 102-12 (Feb.
16-17, 1995).

Abstract, L.T. Heberlein, et al., “A Network Security Moni-
tor”, Proceeding of the 990 IEEE Computer Society Sym-
posium on Research in Security and Privacy, pp 29604,
(May 7-9, 1990).

Abstract, Xinzhou Quin et al., “Integrating Intrusion Detec-
tion and Network Management”, Network Operation and
Management Symposium, 2002, NAOMS 2002. 2002 IEEE/
IFIP, pp 329-44 (Apr. 15-19, 2002).

Abstract, D.G. Schwartz et al., “A Case—Based Approach To
Network Intrusion Detection”, Proceeding of the 5th Inter-
national Conference on Information Fusion, 2002. vol. 2 pp
1084-89 (Jul. 8-11, 2002).

Abstract, “Open Source Security: Opportunity or Oxymo-
ron?” Computer, vol. 35, Issue 3, pp. 18-21 (Mar. 2002).
Abstract, Liu Dihua, et al. “Data Mining For Intrusion
Detection”, Proceedings ICII 2001—Beijing 2001 Interna-
tional Conference on Info—Tech and Info—Net, 2001, vol. 5,
pp 7-12, (Oct. 29-Nov. 2001).

Abstract, Kai Hwang & M. Gangadharan, “Micro—Firewalls
for Dynamic Network Security With Distributed Intrusion
Detection”, NCA 2001 IEEE International Symposium on
Network Computing and Applications, 2001. pp. 68-79,
(Oct. 8-10, 2001).

Abstract, Wenke Lee Stolfo, et al., “Real-Time Data Min-
ing—Based Intrusion Detection”, Proceedings DARPA Infor-
mation Survivability Conference & Exposition II, 2001,
DISCEX °01. vol. 1, pp 89-100 (Jun. 1214, 2001).

Abstract, J. Burns, et al. Automatic Management Of Net-
work Security Policy, Proceedings DARPA Information
Survivability Conference & Exposition II, 2001, DISCEX
’01. vol. 2, pp 12-26, (Jun. 12-14, 2001).

Abstract, Heberlein, et al. “A Network Security Monitor”,
1990, Proceedings Research in Security & Privacy 1990
IEEE Computer Society Symposium on, pp 296-304, (May
7-9, 1990).

Ristenbatt, Martin P., Methodology For Network Commu-
nication Vulnerability Analysis, IEEE, 1988, pp. 493—499.
Skaggs, B., et al., Network Vulnerability Analysis, IEEE,
2002, pp. 493-495.

Thatcher, Michelle, Keeping Your Technology Secure, Tech-
nology & Learning, Apr. 2002, pp. 38, 40, 42 and 44.

* cited by examiner

http://www.fastio.com/

U.S. Patent Oct. 18, 2005 Sheet 1 of 4 US 6,957,348 B1

Internet 112

server A

/‘
'S

102

(e/
o [VDS] 1z

(Router /j\/

server B

108 |04

[Firewall f}\/ =l ™~

server C

(, os]
> 106

-
[~

Fig. 1

ClibPD www fastio.com

http://www.fastio.com/

U.S. Patent Oct. 18, 2005 Sheet 2 of 4 US 6,957,348 B1

Fig. 2

Lexical Elements

Statements Reserved Words
SET Templates Ar'\jOD
SELECT WHERE

TemplateTypes Template Actions
Dependent
Execute
ExecuteHex
Operating System
Host
Protocol
Application
Vulnerability Independent
Port
Contains
ContainsHex
Prediction

ClibPD www fastio.com

http://www.fastio.com/

ClibPD

U.S. Patent

Oct. 18, 2005 Sheet 3 of 4 US 6,957,348 B1

Fig. 3

www fastio.com

e)
Statement
302
\ J
Y
()
Template Type | 304
Y
_
y
4)
» Reserved Word 306
N
_ | J
v v
308 312
Template Type Template Action
L
314 318
y _
Reserved Worq [Reserved Word
A
4 316
F
Template Action
\
y y y y 310
Finish

http://www.fastio.com/

U.S. Patent Oct. 18, 2005 Sheet 4 of 4 US 6,957,348 B1

Fig. 4

Lexical Elements

Reserved Words

Statements

p AND
SET Tempiates

TO
SELECT WHERE

TemplateTypes Template Actions

Dependent

Length
Offset
Threshold

Independent
Operating System

Protocol Contains
Application ContainsHex
Port Flags
FragmentiD
tempType
lempCode
PayloadSize
TimeTolive

ClibPD www fastio.com

http://www.fastio.com/

ClibPD

US 6,957,348 B1

1

INTEROPERABILITY OF VULNERABILITY
AND INTRUSION DETECTION SYSTEMS

RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional
Application No. 60/175,332, filed Jan. 10, 2000, which is
incorporated herein by reference.

FIELD OF THE INVENTION

The present invention relates to network security systems.
More particularly, the present invention relates to vulner-
ability detection systems, intrusion detection systems, com-
munication between the two, and query-based rules for
identifying vulnerabilities and detecting intrusions.

BACKGROUND

Computer networks are vulnerable to many threats that
can inflict damage that can result in significant losses. These
losses can stem from a number of sources including envi-
ronmental hazards, hardware and software failure, user
errors, or even malicious acts of others. A goal of network
security is therefore to protect the confidentiality, integrity,
and availability of information stored electronically in a
network from these threatening sources.

Several conventional resources are available to protect a
network from information losses. For instance, firewalls are
used to enforce a boundary between two or more networks
to filter incoming traffic (generally from the Internet)
according to a security policy. Still, firewalls are inadequate
to fully protect a network since users may not always obtain
access to a network through the Internet (for instance, a user
could circumnavigate the firewall by using a modem
connection). In addition to the many ways a network can be
attacked externally, not all threats originate outside the
firewall and can come from within the network. Further,
firewalls themselves are subject to attack, which can render
the firewall ineffective.

Therefore, networks need to rely on resources other than
firewalls for network security. Such resources include vul-
nerability detection tools and intrusion detection tools. Vul-
nerability detection tools perform examinations of a network
to determine weaknesses in the network that might allow
security violations—in other words, they determine where in
anetwork an attack is possible. Similarly, intrusion detection
tools monitor a network for intrusive traffic and notify a
network administrator of suspicious traffic so that corrective
action can be taken.

Nonetheless, vulnerability detection systems and intru-
sion detection systems are inherently complex and typically
lack interoperability. Security engineers need to know what
types of attack signatures to look for, how to look for them,
and how to respond to an identified attack. But typically, the
intrusion detection system cannot obtain an accurate picture
on the network and cannot leverage off of the risk analysis
conducted by the vulnerability detection system. As a result,
a great burden falls upon the security engineer responsible
for the network configuration. The security engineer must
also constantly examine extensive log data generated from
other devices, as well as remain aware of changes occurring
within the network. Moreover, such intrusion detection
systems frequently burden security engineers with false
alarms—alerting the security engineer to traffic that is not
harmful to the present system, although it may be harmful to
other systems.

To further burden the security engineer, each vulnerability
or potential intrusion needs to be identified and a description

www fastio.com

10

15

20

25

30

35

40

45

50

55

60

65

2

of it stored for use by the vulnerability or intrusion detection
tools. This process, however, is often complicated. For
instance, it is extremely difficult just to write an application
that would check a Secure Shell (SSH) server to determine
if the remote system was running a version of SSH that is
vulnerable to a Denial of Service attack. Traditional devel-
opment methodologies force the user to have an intimate
understanding of TCP/IP and a low-level (often
cumbersome) development language such as ANSI C or
Perl. Even advanced “Attack Scripting Languages” are
overly cumbersome and require an understanding of
variables, “for” loops, “while” loops, and other development
syntax.

Thus, there is a need to develop a vulnerability detection
system and intrusion detection system that can leverage off
one another. Further, there is a need to perform vulnerability
and intrusion identification and description that is usable by
typical network engineers.

SUMMARY

A system and method in accordance with the invention is
disclosed that not only allows an intrusion detection system
(IDS) to leverage off the information gathered by the vul-
nerability detection system (VDS) but also allows a simple
way to define rules for use by the vulnerability and intrusion
detection systems to check for network conditions, such as
vulnerabilities or intrusions.

More specifically, in one embodiment of the invention a
VDS gathers information about a network and processes that
information to determine vulnerabilities. The information is
gathered and processed based on a set of rules stored in the
VDS.

An IDS used with an embodiment of the invention
monitors network traffic for signs of malicious activity. This
analysis of network traffic is also based on a set of rules.
However, the rules used by the IDS are determined based on
the analysis of the network performed by the VDS—the IDS
only monitors for intrusive traffic that can actually affect the
particular network.

The rules used by the VDS and IDS are easily formed and
therefore an end user, such as a security or network engineer,
can easily define and construct rules beyond any that are
defined by the VDS/IDS provider (which may also use the
rule structure). In particular, each rule is formed based on a
set of lexical elements that include, in one embodiment, a set
of statements, a set of templates, and a set of reserved words.
The templates form the fundamental basis for each rule,
defining both entities, such as applications, ports, protocols,
and actions. The actions direct the system to interact with an
entity (such as an application) and elicit a response from the
entity (in the case of a VDS) or to monitor for particular
information in IP packets (in the case of an IDS). Rules in
accordance with the invention are structured to resemble
queries, such as those used in SQL. As such, if each part of
a rule is true, then the rule is true. Accordingly, intrusion
conditions and vulnerability conditions can be defined by
rules, which, if true when evaluated based on information
gathered by the VDS or IDS, indicate the presence of that
condition.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be described with respect to
particular embodiments thereof, and reference will be made
to the drawings in which:

FIG. 1is a generalized function block diagram of a system
used with an embodiment of the invention;

http://www.fastio.com/

ClibPD

US 6,957,348 B1

3

FIG. 2 is a block diagram illustrating the lexical elements
of rules used with a VDS in accordance with an embodiment
of the invention;

FIG. 3 is a flow diagram illustrating the syntactic ordering
of lexical elements to form rules in accordance with an
embodiment of the invention; and

FIG. 4 is a block diagram illustrating the lexical elements
of rules used with an IDS in accordance with an embodiment
of the invention.

DETAILED DESCRIPTION

In accordance with the invention, a system is disclosed
that includes a vulnerability detection system (VDS) and an
intrusion detection system (IDS) that communicate with one
another and that use query-based rules to describe vulner-
abilities and intrusions. FIG. 1 illustrates a system that can
include various embodiments of the invention. As shown, a
network 100 for use with an embodiment of the invention
may have one or more servers. Three servers, 102, 104, and
106, are shown, but any number of servers can be present.
Traffic from Internet 112 must pass through router 110 and
then firewall 108 before it reaches any of the servers
102-106.

Vulnerability Detection. FIG. 1 further shows a VDS 114
used with an embodiment of the invention. VDS 114 (1)
gathers information about network 100, (2) processes that
information to determine vulnerabilities, and (3) reports that
information to a user.

In order to gather information about a network, VDS 114
interrogates the network resources (e.g., servers 102—106)
by sending and receiving data in a specified format. In one
embodiment, the data received by the VDS in response to its
interrogation is automatically (“reflexively”) provided by
the servers 102-106 (for example) to the VDS in response
to the data sent. Hence, this gathering information is some-
times referred to herein as “reflex testing.” More detailed
information on reflex testing can be found in application Ser.
No. 09/648,211, filed Aug. 25, 2000, incorporated herein by
reference.

The data received by the VDS is then compared with
information stored in a “rules database,” included in the
VDS, where the VDS may be one or more physical devices.
The rules database contains rules that describe vulnerabili-
ties and provide a programmatic means to check for the
presence of those vulnerabilities. In particular, the informa-
tion received from a network 100 as a result of reflex testing
is checked against the rules database and can be used to
detect every device in the network 100, identify each host’s
operating system as well as the open ports of the host and the
applications being run on them. This information is then
used to identify vulnerabilities, which can then be elimi-
nated or monitored. In one embodiment, the network is
regularly scanned and the network’s vulnerabilities regu-
larly updated.

Intrusion Detection. Beyond reducing or eliminating
vulnerabilities, there is a need to detect potential threats to
network 100. Thus, an IDS 116 used with an embodiment of
the invention examines network traffic for signs of malicious
activity. IDS 116 uses rules similar to those used by the VDS
to check for such malicious activity. In some embodiments,
the rules used by the IDS and VDS are stored in the same
database.

The rules used by the IDS are loaded into the IDS after
every VDS scan of the network 100. However, the rules
loaded are determined by the VDS vulnerability analysis, so
that only rules that describe possible intrusion conditions as

www fastio.com

10

15

20

25

30

35

40

45

50

55

60

65

4

they exist for the specific network 100 are loaded. Such a
system 1is referred to herein as a Target-based Intrusion
Detection System, or “TIDS”. Such a Target-based IDS will
have the ability to monitor for specific conditions to which
the network has been determined to be vulnerable, as well as
any range of conditions or attacks to which the network
might be vulnerable. For instance, if the VDS finds a type of
service S, but has not verified S’s vulnerability to a buffer
overflow condition, the IDS may still monitor for such a
buffer overflow. So if a vulnerability V is identified, the
intrusion detection system is target-based by virtue of the
fact that it monitors the system running with vulnerability V,
it monitors for attacks on V, and it monitors for attacks that
make sense to look for given the presence of V (but which
may not be attacks against V itself).

Thus the IDS, and its relationship to the VDS can be
conceptualized in terms of “Levels of Validity™:

I. Strong (absolute) Validity: The IDS only monitors for
those attacks against vulnerabilities which the VDS has
confirmed with certainty;

II. Semi-Strong (partial) Validity: The IDS monitors for
attacks against vulnerabilities which the VDS has
confirmed, but also monitors for other attacks or vul-
nerabilities that are non-verified but generally prudent
to look for, especially given the presence of a confirmed
vulnerability; and

III. Null validity: The IDS monitors for everything regard-
less of whether a vulnerability has been confirmed or
not.

All currently existing IDS technologies are based on level
III—“Null Validity.” But a target-based IDS of the present
invention enables validity levels I and II. Hence, the interop-
erability of the IDS and VDS allow the IDS rules to
dynamically adapt to the network’s topology, composition,
and vulnerabilities. Therefore, unlike a traditional IDS,
which reports more false alarms because it analyzes all
traffic regardless of whether it could threaten the particular
network, an embodiment of an IDS in accordance with the
present invention only monitors for relevant intrusions—
those to which the network is potentially vulnerable (levels
I and IT)—and it does not monitor for intrusions to which the
network is not potentially vulnerable. As a result, because
the IDS is sensitive to network topology as well as host
operating systems and vulnerabilities, false alarms can be
minimized. Such an IDS can adapt to changes in the
environment without human intervention, and it allows
levels of speed, efficiency, and accuracy to be attained that
have previously been regarded as unachievable.

Overview of Rules

The rules referred to above that are stored in the rules
database or loaded into the IDS are query-based, and
resemble “assertions” or “queries” found in typical SQL.
The rules are structured to be assertions that, if found true,
identify the presence of a particular condition, such as an
operating system, application, vulnerability, or intrusion.
Hence, collectively, these rules serve to identify and name
the characteristics and properties of the network 100. For
instance, to test for a vulnerability in the Line Printer
Daemon (LPD) that shipped with the Solaris (Trademark of
Sun Microsystems) operating system, the following condi-
tions must be checked: (1) the scanned server is running the
Solaris operating system, and (2) the scanned server is
running LPD. Thus, the rules are constructed to define a
vulnerability if these two conditions are present.

The rules are constructed from a base set of lexical
elements, which include “templates,” “statements,” and
“reserved words.” In one embodiment, the rules used by the

http://www.fastio.com/

ClibPD

US 6,957,348 B1

-

d

VDS 114 are constructed from 11 templates, 2 statements,
and 3 reserved words, as shown in FIG. 2, while the rules
used by IDS 116 are constructed from 2 statements, 15
templates, and 3 reserved words, shown in FIG. 4. These
templates, statements, and reserved words will be discussed
in more detail below.

In addition, the syntactic ordering of the lexical elements
to form the rules is shown in FIG. 3, which will also be
referenced in the discussion below.

Lexical Elements for Vulnerability Detection
Statements

Every rule begins with a statement. A statement is a term
that establishes the role of the rule. In one embodiment, there
are two kinds of statements: SELECT and SET. All capitals
are used to designate statements within rules.

The SELECT statement is the first lexical element for
most rules. SELECT is used to reference one or more
“Template Types,” discussed below, and is used in the
following form:

SELECT Template Type[ID]

The SET statement is used to create new templates and is
not used by an end user (such as a security engineer) in one
embodiment, but only by the VDS/IDS provider. The SET
statement is used to assign a template to a particular reflex
response resulting from reflex testing, such as operating
system reflexes or application reflexes. The SET statement is
usually used in the following form:

SET TemplateType[ID] TO { . . . reflex signature/response . . . }

The TemplateType field will be discussed below. “Reflex
signature/response” correlates to a complex description of
data that may be received as a result of reflex testing. The
details of that complex description are omitted here a they
are not necessary to form an understanding of the invention.
Reserved Words

Reserved words are used to create complex rules by
establishing logical and functional relationships between
multiple templates. There are three reserved words: AND,
TO, and WHERE. Reserved words are shown herein in all
capitals.

The reserved words AND is the logical operator of
conjunction, logically connecting multiple templates. In
order for a rule with AND to be true, each of the conditions
flanking the AND must be satisfied. The reserved word AND
is used as follows:

SELECT TemplateType AND TemplateType AND . . .

The reserved word TO is a connective that is used in
combination with the SET statement to assign a reflex
signature TO a template type. The use of the reserved word
TO is illustrated above with the SET statement.

The reserved word WHERE is a functional connective
used to invoke Template Actions (discussed below). In a rule
using WHERE, the entity on which the specified Template
Action is executed to specified by the Template Type imme-
diately preceding the WHERE term. Thus, term ordering is
important for any template actions to the right of the
WHERE word. Template Actions are executed in the order
they are listed from left to right. In contrast, when multiple
independent Template Types are placed in conjunction using
the reserved word AND, the ordering of the templates is
unimportant.

www fastio.com

10

15

20

25

30

35

40

45

50

55

60

65

6
The reserved word WHERE is used as follows:

SELECT TemplateType[A] AND TemplateType[B] WHERE Tem-
plateAction[Action]

Hence the reserved word WHERE specifies a Template
Action to be performed on the entity identified by
Template Type[B].

Templates

Templates form the fundamental basis of rules formed in
accordance with the invention, representing various entities
or processes. Templates fall into two classes: Template
Types and Template Action. Templates in either class can
also be anonymous or non-anonymous, dependent or inde-
pendent.

Some templates require qualification—they require more
specific information. Such templates are referred to herein as
“non-anonymous,” and qualifiers are appended to the speci-
fied template in brackets. Templates that do not require
qualification are said to be “anonymous.”

It is sometimes necessary for a template of a given class
to be followed by an additional template, requiring closure.
Such templates are referred to as “dependent.” In some
embodiments, dependent templates fall into two categories:
“indefinite closure dependent templates” and “definite clo-
sure templates.” Indefinite closure dependent templates can
be closed by any corresponding template of the same class
while definite closure templates must be closed by a specific
template. Templates that do not need to be followed by
another temperature are “independent.” This concept of
dependent templates will become more clear with the dis-
cussion below.

Template Types

Template Types are like a genus in the taxonomic sense;
that is, a Template Type is the name for a broad “type” of
entity. In an embodiment of the invention used with a VDS,
there are six Template Types: Operating System, Host,
Application, Port, Protocol, and Vulnerability. Each of these
Template Types is discussed below.

An Application template corresponds with a particular
application. When selected, an Application template estab-
lishes a condition that is true when the specified application
is detected on a remote host. Accordingly, the Application
Template is used when vulnerability conditions include the
presence of one or more applications. The syntax for the
Application template is as follows:

SELECT Application[Application_ID]

As shown and referring to FIG. 3, a “statement” (SELECT)
forms the first part of the rule, step 302, followed by the
Application template, step 304, at which point the rule is
complete, 310. Thus, this is the simplest example of a rule
formed.

The “Application_ID” is a qualifier identifying a particu-
lar application. In one embodiment, possible applications are
given identification numbers such as shown in Table 1.

http://www.fastio.com/

ClibPD

US 6,957,348 B1

TABLE 1
ID Name/Port ID Name/Port ID Name/Port ID Name/Port
1 tepmux/1 2 compressnet-2/2 3 compressnet-3/3 4 rje/5
5 echo/7 6 discard/9 7 systat/11 8 daytime/13
9 netstat/15 10 qotd/17 11 msp/18 12 chargen/19
13 ftp-data/20 14 ftp/21 15 ssh/22 16 telnet/23
17 priv-mail/24

Although 17 applications with default ports are shown in
Table 1, in various embodiments, thousands of applications
could be identified and given identification numbers. The
number for the particular application sought in the rule is
placed in the “Application_ ID” field in one embodiment. So
if a particular vulnerability is associated with the FTP
application, the rule “SELECT Application[14]” may be
invoked. Of course, in other embodiments a character string
identifying the application name could be used, e.g., “FTP”
could be placed in the Application_ID field instead of a
number: SELECT Application[ftp].

The Host template will be true of any remote device that
is detected on the network through reflex testing.
Accordingly, the Host template is used when there is a
vulnerability condition associated with the very presence of
an operating system.

To illustrate, all versions of the BeOS (Trademark of Be
Inc.) operating system are vulnerable to a remote denial-of-
service attack that can be caused by sending the device
specific kinds of non-standard packets. The BeOS TCP/IP
stack immediately crashes whenever it receives a TCP or
UDP packet in which the IP length is set to be less than the
minimum header length for each respective protocol.

The syntax for the Host template is developed following
steps 302, 304, and 310:

SELECT Host

As shown, the Host template need not be qualified by any
additional identifiers or information (unlike the Application
template), and is therefore “anonymous,” while the Appli-
cation template is “non-anonymous.”

The Port template will be true if a specific port is open on
a remote system. Accordingly, the Port template is used
when one or more vulnerability conditions involve open
ports. The Port template is non-anonymous and is used as
follows:

SELECT Port[Port number]

The Protocol template will be true if a specific TCP/IP
protocol is present. Qualifiers for the Protocol template are
TCP and UDP.

An Operating System template, when placed in a rule,
establishes a vulnerability condition that is true if the
operating system for which the template is qualified is
detected on a host. In one embodiment, every rule requires
the use of at least one Operating System template. In this
manner, only vulnerability conditions are checked that affect
a particular operating system. For example, vulnerability
conditions that only affect the Solaris platform are not tested
against systems running Windows NT.

In some embodiments of the invention the Operating
System template is structured much like the Application
template, e.g., SELECT OperatingSystem[OS identifier].
But in other embodiments, because an operating system is
identified for every rule, it is bound to the rule after the rest

www fastio.com

15

20

25

30

35

40

45

50

55

60

65

of the rule is constructed. For instance, in one embodiment,
the user is prompted to enter the operating system associated
with the rule either before or after the user constructs it. In
some embodiments, such a prompt is realized using a
graphical user interface (GUI) that includes a rule entry line
(for entering all elements of the rule except the operating
system) and an operating system entry line. In this manner,
the complexity of rules as seen by the user is reduced, since
one term is essentially eliminated.

In addition, each rule is named, thereby becoming asso-
ciated with a particular vulnerability ID, which can be a
numerical identifier or a name. In some embodiments,
nested rules can be created by using the Vulnerability
template and selecting the vulnerability__ID of a previously
entered rule. Accordingly, the rule under construction will
inherent all of the template objects and relations of the
referenced vulnerability. This template can be used to build
complex rules while at the same time reducing the duplica-
tion of work. This mechanism allows the use of any com-
pleted rule template to serve as a modifier to any other. The
syntax for the rules is:

SELECT Vulnerability [Vuln__ID]AND . . .

Template Actions

Template Actions are procedures that can be integrated
into rules for the purpose of interacting with an application
or service in a programmatic manner. Template Actions
involve sending data to a particular entity and eliciting a
response from that entity. In essence, then, Template Actions
allow a user to create specific challenge-response tests.
Template Actions include the following four templates in
one embodiment: Contains, ContainsHex, Execute,
ExecuteHex. No template actions are anonymous: all require
some form of qualification.

The Contains template has two uses: (1) to follow the
WHERE term or (2) to provide closure for the Execute or
ExecuteHex templates (described below), which are depen-
dent on the Contains template (or ContainsHex template) for
closure. The Contains template is used to determined if an
application response contains a specified string of charac-
ters. The syntax for three uses of the Contains template is:

SELECT TemplateType WHERE Contains[string]

SELECT TemplateType WHERE Execute[string] AND Contains
[string]

SELECT TemplateType WHERE ExecuteHex[hex string]

AND Contains[string]

As shown, the Contains template is qualified with a string of
data. The first syntactic example follows steps 302, 304, 306,
308, and 310. The second and third examples follows steps
302, 304, 306, 312, 314, 316, and 320.

To illustrate, a vulnerability condition exists in Qual-
comm’s (Trademark of Qualcomm Inc.) qpopper versions

http://www.fastio.com/

ClibPD

US 6,957,348 B1

9

3.0beta29 and below, which allow an attacker to execute
malicious code by overwriting a buffer in the second argu-
ment of the LIST command. Thus, specific usage of a the
Contains template appears in the following rule to identify
this condition:

SELECT Application[96] WHERE Contains[+OK
QPOP(version3.0b)]

Application[96] identifies the application gpopper in the
above example.

The Execute template sends a string of data to a particular
port or application. Hence the Execute template is used to
send data to a remote system for the purpose of eliciting a
response indicative of a vulnerability condition. The
Execute template exhibits indefinite dependence with
respect to the Contains or ContainsHex templates and must
always be followed by the Contains or ContainsHex tem-
plates for closure. In addition, Execute is qualified with a
string of data. The syntax for the Execute template is shown
above. Any text that qualifies the template is sent to the
entity identified by the Template Type immediately preceed-
ing the WHERE (such as application).

To illustrate, to test an FTP server to determine if it allows
someone to log in with a user name of “anonymous” and a
password of “anonymous,” a rule may be structured as
follows, where 331 and 230 are FTP reply codes:

SELECT Application[FTP] WHERE Execute[user anonymous]
AND Contains[331] AND Execute[pass anonymous] AND
Contains[230]

The ContainsHex template is used to compare a hexa-
decimal string to data returned as the result of the Execute
or ExecuteHex templates. ContainsHex can be used to
satisfy the template dependency of Execute or ExecuteHex.
The syntax for one use of the ContainsHex template follows:

SELECT TemplateType WHERE Execute[string] and ContainsHex
[hex string]

The ExecuteHex template is used to send hexadecimal
data to a remote port or application to test for a particular
vulnerability condition. Accordingly, ExecuteHex is used to
interrogate network services or specific ports. ExecuteHex
exhibits indefinite dependence with respect to the Contain-
sHex or Contains template, and is followed by the Contains
or ContainsHex templates for closure. The syntax for the
ExecuteHex template is:

SELECT TemplateType WHERE ExecuteHex| hex strings] AND
Contains[string]

The Prediction template is used to test the predictability of
TCP sequence numbers generated by a network, a vulner-
ability condition that is important for attacks involving IP
spoofing or connecting hijacking. The Prediction template is
qualified by a threshold value for the number of packets, but
the “less than” (<) operator can be used. The Prediction
template is preceded by SELECTing the Template Type Port
with the port number “0”, which indicates any port on the
host. An example of a rule including the Prediction template
is:

SELECT Port[0] WHERE Prediction] <500]

In this sample usage, the rule would be true for any specified
operating system that generated packet sequence numbers
which could be predicted by “listening” to less than 500
packets.

www fastio.com

10

15

20

25

30

35

40

45

50

55

60

65

10

In summary, FIG. 3 illustrates the possible ordering of
lexical elements in the construction of rules. In its simplest
form a rule can be formed by a Statement, step 302, and a
Template Type, step 304, e.g., SELECT Host. More complex
statements, however, are subsequently linked with a
Reserved Word, step 306, followed by a Template Type, step
308 or a Template Action, step 312. Still more complex, a
rule can be sequentially formed with a Statement, step 302,
a Template Type, step 304, a Reserved Word, step 306, a
Template Action, step 312, a Reserved Word, step 314 and
a Template Action, step 316. Finally, a rule can be formed
with a Statement, step 302, a Template Type, step 304, a
Reserved Word, step 306, a Template Action, step 312, a
Reserved Word, step 314, a Template Action, step 316,
Reserved Word, step 318, and a Template Action, step 312.
Various other element combinations are possible as illus-
trated in FIG. 3.

Lexical Elements for Intrusion Detection

The rules for monitoring for intrusions are constructed
similar to those for monitoring for vulnerabilities. The rules
for IDS include the lexical elements of Statements, Template
Types, Template Actions, and Reserved Words. The State-
ments and Reserved words are the same as for VDS, and
therefore, will not be again explained. Moreover, the struc-
ture and syntax is also generally the same and will follow the
sequencing of FIG. 3. However, as shown in FIG. 4, the
templates are different, since they are used for a different
function (monitoring for instructions rather than
vulnerabilities) and are discussed below.

Template Types

The template types for monitoring for intrusions include
four template types: protocol, port, application, and operat-
ing system. All are non-anonymous and require qualifica-
tion. The operating system and application types are the
same as for the VDS templates.

The Port template is qualified by port numbers, where
only legitimate port number can be used as qualifiers. The
Port template is used when a security issue involves open
ports on a remote system. The Port template can be used as
described with the VDS or immediately following the
reserved word WHERE. Hence, the Port template is basi-
cally the same as that used with the VDS except the Port
template can also accept port ranges using the “>” (greater
than), “<” (less than), and “!” (not) symbols. Therefore,
examples of use of the Port template include:

SELECT Port[1999]
SELECT TemplateType WHERE Port[>5999] and Port] <6010]

The Protocol template for use with IDS is similar to that
used with the VDS, accepting various protocols for
qualification, including UDP, TCP, and ICMP.

Template Actions

In the IDS, the Template Actions are procedures that are
integrated into the rules that examine network traffic for the
existence of specific conditions. TemplateActions involve
the examination of specific fields of data in an IP packet (for
instance) for predetermined values. Template Actions
include: Contains, ContainsHex, Flags, FragmentID,
IempCode, IempType, Length, Offset, PayloadSize,
Threshold, and TimeToLive. All Template actions are non-
anonymous, requiring qualification. Each will be discussed
below.

“Contains” and “ContainsHex™ are used with the reserved
word WHERE and examine the payload of packet for a
specific text of hexadecimal string using standard pattern-

http://www.fastio.com/

ClibPD

US 6,957,348 B1

1

matching functions known in the art. If the data contains the
specific string of characters qualifying any instance of this
template, the Contains template will be satisfied.
Accordingly, the Contains template is used to detect intru-
sions that can be identified by strings of characters. The
syntax for the Contains template is as follows:

SELECT TemplateType WHERE Contains[string]

Similarly, if the packet data contains the specific hex values
provided for the template, the template will be satisfied. An
example usage for the ContainsHex template is:

SELECT Application[130] WHERE ContainsHex
[\xE8\xCO\XFF\xFEF'\xFF]

As shown, the ContainsHex template uses a hex value
preceded by a forward slash.

The Flags template tests the flags of a TCP packet for
specified bit settings. The Flags template is used to look for
specific flags settings within the TCP header. Frequently, this
template is used to determine when a session is either being
established or has been established. Alternatively, this tem-
plate could be used to detect “stealth” port-scanning and
alert for policy violations.

Flag types are specified as follows:

F=FIN

S=SYN

R=RST

P=PSH

A=ACK

U=URG

2=Reserved bit 2

1=Reserved bit 1 (Msb of TCP flags field)

0O=no bits set

In some embodiments, modifiers that can also be used
with the Flags template are:

*=Qualifies if any of the listed flags are set
+=Qualifies of the flags listed plus any others are set

!=Qualifies if the listed flags are not set
An example usage of the use of the Flags template is:

SELECT Port[0] WHERE Flag[SF]

Hence, in this example the rule will be true if a packet
destined for any port on the host has the FIN and SYN flags
set. (Note that port[0] is used to herein to designate “any”
port).

The FragmentID template checks the ID field of the IP
header for a specified value. It is primarily useful for finding
crafted packets containing known values such as “31337.”
To illustrate, the Jolt2 denial-of-service attack uses a crafted
fragmented packet to disrupt service on certain operating
systems. The identifying characteristics of this attack
include a static IP fragment ID value of 1109 (0x455 hex):

SELECT Port[0] WHERE FragmentID[1109]

The IempType template describes the possible IempType
values that may be encountered and will be true if the
IempType field of the Iemp header of a packet matches a
specified value. This template is frequently useful for deter-
mining when reconnaissance is being performed on a target
network or host. The syntax for the IempType template is:

www fastio.com

10

15

20

25

30

35

40

45

50

55

60

65

12

SELECT TemplateType WHERE IempType[value]

The values for the IempType template are as follows:

0=ECHO Reply

3=ICMP Unreachable

4=Icmp Source Quench

5=Icmp Redirect

8=Icmp ECHO

9=Icmp Rout Advertisement

10=Icmp Router Solicitation

11=Iecmp TTL Exceeded

12=Icmp Parameter Problem

13=Icmp Timestampd

14=Icmp Timestamp reply

15=Icmp Info Request

16=Icmp Info Request Reply

17=Icmp Netmask Request

18=Icmp Netmask Reply

The IempCode template examines the Code field in an
Icmp header. Various types of Iemp datagrams have unique
codes, which determine their purpose and function.

The Length template places restrictions on the depth that
a Contains or ContainsHex template searches into a packet
payload for a pattern match. Thus, the Length template is
dependent on the presence of a Contains or ContainsHex
template for closure and is always used with one of those
templates. Syntax for the Length template is:

SELECT TemplateType WHERE Contains[string] AND Length
[value]

The Offset template specifies the beginning offset into the
packet payload at which to start a Contains or ContainsHex
template pattern match. As such, it is only useful within the
context to the Contains and ContainsHex templates and is
dependent on one of those templates being present. Syntax
for the Offset template is:

SELECT TemplateType WHERE Contains[string] AND Offset
[value]

The PayloadSize template qualifies the size of the payload
in an IP packet. It is useful for detecting buffer-overflow
conditions and application-level attacks. The syntax for the
PayloadSize template is:

SELECT TemplateType WHERE PayloadSize[value]

The Threshold template is used to specify a count of
events taking place over a period of time. If the specified
number of events match a threshold value set for the time
period, the Threshold template is true. This template is
dependent (indefinite closure dependent) and requires an
independent template to be specified to provide closure.
Syntax for the Treshold template is:

SELECT TemplateType WHERE Threshold[value] AND . . .

The TimeToLive field in an IP header contains a decre-
menting counter value to prevent packets from getting stuck
in infinite routing loops. It is of primary interested in the IDS
for detecting traceroute attempts on a target host or “Fire-
walking.” Accordingly, the TimeToLive template is used to
detect IP packets having a TimeToLive field set to a par-
ticular value. The syntax for the TimeToLive template is:

http://www.fastio.com/

ClibPD

US 6,957,348 B1

13

SELECT TemplateType WHERE TimeToLive[value]

In addition to the specific syntax and operations described
above for VDS and IDS, rules can become logically linked
and related through binding and inheritance.

Binding is an operation in which one or more rules are
logically connected to a particular vulnerability or intrusion
object (e.g., the applications identified in Table 1). Each
bound rule is tested against a host. If any one of the rules is
satisfied by the conditions of the host, then the vulnerability
or intrusion condition is true. Thus, binding acts as an
implicit “OR”.

Binding also occurs between vulnerability and intrusion
objects. For example, by binding attack A to vulnerability V,
the IDS will begin monitoring for occurrences of A as soon
as the VDS finishes a network scan in which V is detected.

Rules can also inherit characteristics from other rules in
some embodiments. As discussed with respect to the vul-
nerability template, rules can be named, numbered, or oth-
erwise identified, and that identification can be incorproated
into a rule by an appropriate template. Although only the
vulnerability template for the VDS is discussed to provide
inheritance, there is no reason why a similar template could
not be provided in the IDS arena in various embodiments.

Although a number of lexical elements have been iden-
tified and described herein for one embodiment of the
invention, other embodiments may utilize more, fewer, or
other lexical elements.

A system in accordance with the invention has been
described that makes administering a network considerably
easier since the VDS and IDS communicate regarding the
network, allowing the IDS to leverage off of the VDS to
monitor only for relevant intrusions. Moreover, a system in
accordance with the invention uses query-based rules,
allowing a user to easily construct rules that define network
conditions, such as vulnerabilities or intrusions. It should be
understood, however, that an embodiment of the invention
may include many rules predefined and stored in such a
system by the provider of the system, but that still allows
additional rules construction by the end user.

In one embodiment of the invention, a VDS and an IDS
are hardware devices, but in other embodiments they could
be implemented with software or firmware. In addition, a
rule constructor as described can be implemented with
hardware, software, or firmware as part of the VDS or IDS,
but in most embodiments will have an interface, such as
GUI, to receive information from the user as to how the rule
should be constructed.

It should be understood that the particular embodiments
described above are only illustrative of the principles of the
present invention, and various modifications could be made
by those skilled in the art without departing from the scope
and spirit of the invention. Thus, the scope of the present
invention is limited only by the claims that follow.

What is claimed is:

1. A computer-implemented system for protecting a
network, comprising:

a vulnerability detection system (VDS) for gathering
information about the network to determine vulner-
abilities of a host from a plurality of hosts on the
network; and

an intrusion detection system (IDS), cooperative with the
VDS, for examining network traffic responsive to the
vulnerabilities of the host from the plurality of hosts as
determined by the VDS to detect traffic indicative of
malicious activity.

2. The system of claim 1, wherein the VDS is adapted to

gather information about the network by sending data to the

www fastio.com

10

15

20

25

30

35

40

45

50

55

60

65

14

plurality of hosts and receiving responsive data form the
plurality of hosts.

3. The system of claim 1, wherein the VDS is adapted to
gather information automatically provided by the plurality
of hosts.

4. The system of claim 1, further comprising:

a vulnerabilities rules database, in communication with
the VDS, for storing rules describing vulnerabilities of
the plurality of hosts,

wherein the VDS is adapted to analyze the gathered
information with the rules to determine the vulnerabili-
ties of the plurality of hosts.

5. The system of claim 4, wherein the VDS is adapted to
analyze the gathered information with the rules to identify
operating systems on the plurality of hosts and determine the
vulnerabilities responsive to the respective operating sys-
tems.

6. The system of claim 4, wherein the VDS is adapted to
analyze the gathered information with the rules to identify
open ports on the plurality of hosts and determine the
vulnerabilities based on the open ports.

7. The system of claim 4, wherein the VDS is adapted to
analyze the gathered information with the rules to identify
applications executing on the plurality of hosts and deter-
mine the vulnerabilities based on the application.

8. The system of claim 1, further comprising:

an intrusion rules database, in communications with the
IDS, for storing rules describing malicious activity,

wherein the IDS is adapted to analyze the network traffic
with the rules to detect network traffic indicative of
exploitations of the determined vulnerabilities.

9. The system of claim 1, wherein the IDS is adapted to
detect traffic indicative of exploitations of only the deter-
mined vulnerabilities.

10. The system of claim 1, wherein the VDS is adapted to
update the determined vulnerabilities, and wherein the IDS
is adapted to detect traffic indicative of malicious activity in
response to the update.

11. The system of claim 10, wherein the VDS is adapted
to update the determined vulnerabilities in response to a
change in the network.

12. A computer-implemented method for protecting a
network comprising:

gathering information about the network to determine
vulnerabilities of a host from a plurality of hosts on the
network; and

cooperative with the step of gathering information, exam-
ining network traffic responsive to the determined
vulnerabilities of the host from the plurality of hosts to
detect network traffic indicative of malicious activity.

13. The method of claim 12, wherein gathering informa-
tion comprises sending data to plurality of hosts on the
network and receiving responsive data from the plurality of
hosts.

14. The method of claim 12, wherein gathering informa-
tion comprises receiving data automatically provided by the
plurality of hosts on the network.

15. The method of claim 12, further comprising:

storing rules to describe vulnerabilities of the plurality of
hosts,

wherein determining vulnerabilities includes analyzing
the gathered information with the rules.

16. The method of claim 15, wherein determining vul-
nerabilities comprises analyzing the gathered information
with the rules to identify operating systems on the plurality
of hosts.

http://www.fastio.com/

ClibPD

US 6,957,348 B1

15

17. The method of claim 15, wherein determining vul-
nerabilities comprises analyzing the gathered information
with the rules to identify open ports on the plurality of hosts.

18. The method of claim 15, wherein determining vul-
nerabilities comprises comparing the gathered information
against the rules to identify applications on the plurality of
hosts.

19. The method of claim 12, further comprising:

storing rules describing malicious activity,

wherein detecting network traffic indicative of malicious
activity comprises analyzing the network traffic with
the rules to detect traffic indicative of exploitation of
the determined vulnerabilities.

20. The method of claim 12, wherein examining network
traffic consists of detecting traffic indicative of exploitations
of only the determined vulnerabilities.

21. The method of claim 12, further comprising:

updating the determined vulnerabilities and detecting
traffic indicative of malicious activity in response to the
update.
22. The method of claim 21, wherein the updating is
responsive to a change in the network.
23. A computer program product, comprising:

a computer-readable medium having computer program
logic embodied therein for protecting a network, the
computer logic:

gathering information about the network to determine
vulnerabilities of a host from a plurality of hosts on the
network; and

cooperative with the step of gathering information, exam-
ining network traffic responsive to the determined
vulnerabilities of the host from the plurality of hosts to
detect network traffic indicative of malicious activity.
24. The computer program product of claim 23, wherein
gathering information comprises sending data to plurality of
hosts on the network and receiving responsive data from the
plurality of hosts.
25. The computer program product of claim 23, wherein
gathering information comprises receiving data automati-
cally provided by the plurality of hosts on the network.

www fastio.com

10

15

20

25

30

35

40

16

26. The computer program product of claim 23, further
comprising:
storing rules to describe vulnerabilities of the plurality of
hosts,

wherein determining vulnerabilities includes analyzing

the gathered information with the rules.

27. The computer program product of claim 26, wherein
determining vulnerabilities comprises analyzing the gath-
ered information with the rules to identify operating systems
on the plurality of hosts.

28. The computer program product of claim 26, wherein
determining vulnerabilities comprises analyzing the gath-
ered information with the rules to identify open ports on the
plurality of hosts.

29. The computer program product of claim 26, wherein
determining vulnerabilities comprises comparing the gath-
ered information against the rules to identify applications on
the plurality of hosts.

30. The computer program product of claim 23, further
comprising:

storing rules describing malicious activity;

wherein detecting network traffic indicative of malicious
activity comprises analyzing the network traffic with
the rules to detect traffic indicative of exploitations of
the determined vulnerabilities.

31. The computer program product of claim 23, wherein
examining network traffic consists of detecting traffic indica-
tive of exploitations of only the verified vulnerabilities.

32. The computer program product of claim 23, further
comprising:

updating the determined vulnerabilities; and

detecting traffic indicative of malicious activity in
response to the update.
33. The computer program product of claim 32, wherein
the updating is responsive to a change in the network.

http://www.fastio.com/

PATENT NO.
DATED
INVENTOR(S)

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

16,957,348 B1 Page 1 of 1
: October 18, 2005
: John S. Flowers et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is

hereby

corrected as shown below:

Column 14,

Line 1,

change “form” to -- from --;

Line 25, change “application” to -- applications --;
Line 27, change “communications” to -- communication --; and

Column 15,
Line 12, change “exploitation” to -- exploitations. --.

Signed and Sealed this

Tenth Day of January, 2006

o W D

JON W. DUDAS
Director of the United States Patent and Trademark Office

ClibPD

www fastio.com

http://www.fastio.com/

	d:\p2mp\img\0000672359\06957348\300_0001.tif
	d:\p2mp\img\0000672359\06957348\300_0002.tif
	d:\p2mp\img\0000672359\06957348\300_0003.tif
	d:\p2mp\img\0000672359\06957348\300_0004.tif
	d:\p2mp\img\0000672359\06957348\300_0005.tif
	d:\p2mp\img\0000672359\06957348\300_0006.tif
	d:\p2mp\img\0000672359\06957348\300_0007.tif
	d:\p2mp\img\0000672359\06957348\300_0008.tif
	d:\p2mp\img\0000672359\06957348\300_0009.tif
	d:\p2mp\img\0000672359\06957348\300_0010.tif
	d:\p2mp\img\0000672359\06957348\300_0011.tif
	d:\p2mp\img\0000672359\06957348\300_0012.tif
	d:\p2mp\img\0000672359\06957348\300_0013.tif
	d:\p2mp\img\0000672359\06957348\300_0014.tif
	d:\p2mp\img\0000672359\06957348\300_0015.tif

